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In connection with the recent investigations of the instability of unbounded elliptical 
flows, some methods are discussed for the study af the instability of bounded flows. 
The stability of a ‘basic flow ’ which is two-dimensional and rotating, with elliptical 
streamlines similar to the elliptical section of an experimentally studied cavity, is 
investigated in the framework of linear theory (for circular rotation, the flow 
discussed is stable). The regions of instability for three-dimensional disturbances are 
found in the plane of the parameters defining the geometry of the system (the height 
of the ellipsoidal cavity and the degree of ellipticity). It is shown that two types of 
instability exist, characterized by either monotone or oscillatory growth of the 
amplitudes of small disturbances. 

The influence of the Coriolis force field on this instability mechanism is also 
studied. Rotation of the system as a whole changes the regions of instability in 
parameter space characterizing the geometry of the cavity and the wavenumbers of 
unstable disturbances. As a result, the Coriolis force may stabilize or destabilize the 
basic flow for a given geometry. 

The instability of rotating density-stratified flow with elliptical streamlines is also 
considered. 

1. Introduction 
The recent investigations of the three-dimensional elliptical instability in an 

infinite space performed by Pierrehumbert (1986)) Bayly (1986), Landman & 
Saffman (1987), Waleffe (1990) have shown the necessity of the further development 
of theoretical and experimental studies of this type of instability for bounded flows. 
The theoretical solution for unbounded elliptical rotation presented in the above 
papers describes the development of spatially periodic disturbances of planar form 
superimposed on a basic two-dimensional elliptical eddy with spatially uniform 
vorticity. For this solution the nonlinear terms of the hydrodynamic equations are 
equal to zero identically. A more general case of this type of disturbance 
superimposed on a basic flow with uniform rates of strain was considered by Craik 
& Criminale (1986) (see also Craik 1988, 1989). The stability theory of unbounded 
elliptical rotation does not determine the lengthscale of unstable disturbances and 
the structures of instabilities are independent of it. 

The existence of the exact solution for wavelike disturbances is connected with 
unboundedness of the flow. But the boundedness of the liquid volume is an essential 
condition for experimental investigation of the elliptical instability. Since streamlines 
of the basic flow are elliptical, it is natural to investigate this type of instability using 
elliptical containers (a cylinder or a three-axis ellipsoid). 
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The instability of elliptical rotation resulting in disturbances with spatially non- 
uniform vorticity was originally described by Gledzer et al. (1974) for a three-axis 
ellipsoid with a particular ratio of the axis. The experiments on ellipsoids were 
performed with the objective of studying flows with velocity components that  
depend linearly on the coordinates (Obukhov & Dolzhansky 1975). Classic results of 
Greenhill (1879), Hough (1895) and Poincar6 (1910) predict the known condition that 
there is stability for rotation of fluid around the short and long axes of an ellipsoid 
and instability for rotation around the middle axis. The experiments mentioned 
above have confirmed the theory for the short and middle axes, but at the same time 
have shown some unexpected results for elliptical rotation around the long axis : for 
some values of the axes ratio it turned out to  be unstable. A two-eddy pattern of 
motion was observed only for a certain interval of the long-axis length (see also 
Roesner & Schmieg 1980). The development of disturbances in this case has been 
investigated theoretically by expanding the velocity fields in terms of polynomials in 
the spatial coordinates (Gledzer & Ponomarev 1977 a) .  

Some theoretical approaches to  the stability of liquid motion in an elliptical 
cylinder together with an experimental study were presented by Gledzer et al. (1975). 
The experiments for elliptical cylinders were connected with an investigation of 
elliptical instability as one of the mechanisms for the generation of vortex structures 
on a background of velocity fields with similar to elliptical streamlines. The possible 
role of this type of instability was hypothesized, together with a cascade process of 
energy transfer for shear-flow turbulence. A related problem was discussed by Orszag 
&, Pafera (1983), Herbert (1983), Pierrehumbert & Widnall(l982) and Bayly, Orszag 
& Herbert (1988) concerning the secondary instability of shear flows. 

The experiments on both elliptical cylinders and ellipsoids have demonstrated a 
qualitative difference in the behaviour of the disturbances with small changes of the 
container length. I n  the first case, a slow decay of the main elliptical rotation was 
observed, probably with small-scale instabilities. In the other case, the generation of 
secondary vortex structures occurs with considerable inclination of their axis 
rotation to  the axis of the cylinder, 

Such experiments made it possible to isolate the effects of the elliptical instability 
since the influence on the other instabilities of neighbouring container parameters 
looks almost identical. Experiments on elliptical cylinders with variable eccentricity 
were performed by Chernous’ko (1978) to separate the influence of the different types 
of instabilities from the large-scale elliptical one. For this case small changes of 
eccentricity produce transitions between stable and unstable elliptical rotation 
around the main axis of the cylinder. 

The experiments described in this paper were carried out on containers with walls 
a t  rest. Malkus (1989) has performed an experiment to detect elliptical instability in 
a flow generated by rotation of the walls of an elastic elliptical cylinder (see also 
Malkus &, Waleffe 1991), which reduces the effects of small-scale instabilities in the 
sidewall boundary layer. 

The stability of an elliptical filament in an unbounded velocity field with a uniform 
rate of strain is intermediate between that of unbounded and bounded elliptical 
instability. It was considered by Tsai &, Widnall (1976) using resonant theory, in a 
different formulation by Vladimirov, Ribak & Tarasov (1983~)  and Vladimirov & 
Ilyjn (1988) and for finite values of eccentricity by Robinson & Saffman 
( 1984). 

The important feature of bounded elliptical instability is the existence of the 
horizontal scale (the mean width of the vessels or filament). Hence the investigation 
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of bounded elliptical flows allows us to find the relationship between the parameters 
of the main unstable disturbances and the horizontal scale of the elliptical rotation. 

The aim of this paper is twofold. First, it is to describe the instabilities of bounded 
elliptical flows and the relation with the unbounded case. Second, i t  is to connect the 
analysis for elliptical cylinders where the Galerkin approximations are used, and for 
ellipsoids where it is possible to find exact solutions of a linear problem. 

The paper is organized as follows. In $ 2  a general formulation of the liquid rotation 
stability problem in a cavity with elliptical sections is made. The Galerkin method 
is used in the framework of a linear theory on the basis of the eigenfunctions for the 
circular liquid rotation problem. In $3 the method is illustrated for an elliptical 
cylinder (and at the beginning of $4 for a three-axis ellipsoid). The main types of 
instability are determined in terms of the character of disturbance growth. A 
comparison of the results following from stability theory for bounded and unbounded 
flows is made. In $3.2 we give a brief summary of experiments and their comparison 
with the theory. In $4 a method of instability study for an ellipsoid based on a 
polynomial representation in the coordinates of the velocity field is presented. Thus 
an exact solution for the linear instability problem is obtained. A comparison with 
the experiments for various ellipsoids is made and a simple model for nonlinear 
interaction of the main elliptical rotation and unstable disturbances is also suggested. 
The model provides a description of the experimentally observed phenomenon of the 
transition from one steady state of the hydrodynamical system to another. In  $5 we 
consider the influence of the Coriolis force field on the development of elliptical 
instability both in the elliptical cylinder and the three-axis ellipsoid. For unbounded 
elliptical rotation the effect of fluid stratification is studied. 

The results concerning the stability of a stratified elliptical eddy and the influence 
of the Coriolis force field are likely to be of geophysical interest. 

2. General formulation 

The velocity field with elliptical streamlines 

2.1. Statement of the problem 

(where i j , k  are unit vectors corresponding to coordinates x, y , z ;  Q = const.) is a 
stationary solution of the equations of an incompressible ideal fluid for an unbounded 
domain or a volume having the surface 

(x /a )2  + (Y/bY = f 2(z /L) ,  ( 2 . 2 )  

where f is an arbitrary function. 
The vorticity Sa, of this flow is spatially constant, 52, = (a2 + b2)/(ab)  Bk. 
The linear stability of the elliptical flow (2.1) to small inviscid perturbations u = 

(u, v, w), p is governed by the equations (density p = 1) 

au 
- + + o ~ v u + u ~ v u o  at = - v p ,  v - u  = 0. 

In new variables u’,p’, 
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equations (2 .3)  take the form (we shall henceforth omit the primes) 
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0 -1 0 cos24p -sin% 0 
A = i i  0 01, T =  I - s inQ -cos%O 

0 0  0 0 0  

with the boundary condition u, = 0. Parameter E characterizes the degree of 
ellipticity of the flow strcamlines. 

A single equation for the velocity w directed along the z-axis can be obtained from 
(2 .5)  and (2 .6)  (Gledzer, Dolzhansky & Obukhov 1981, and, in another form, Waleffe 
1990) : 

, ( 2 . 9 ~ )  
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i (2.14) 

We shall seek a solution of (2.9) in the form 

u = C, exp (ist) u,, 
a 

(2.1 1 )  

where ua is the solution of the eigenvalue problem for unperturbed equations ( E  = 0) 

Hu,+Vp,  = -iou,, V - u ,  = 0, (2.12) 

with the same condition u, = 0 on the surface of the volume. This solution describes 
the inertial waves in a fluid rotating as a whole (Greenspan 1968). Experiments by 
McEwan (1970) have shown that such solutions give a very accurate description of 
individual modes in a rotating cylinder containing viscous fluid at sufficiently high 
Reynolds numbers. 

The operator iH is self-adjoint, with the scalar product being determined by 

(u, 1))  = Jv u .  v*r dr drp dz, (2.13) 

where the integration is extended over the region occupied by the fluid, hence the 
characteristic values w in (2.12) are real. Physically that means that the 'solid-body ' 
rotation of fluid is stable. The functions ua a t  various eigenvalues are orthogonal in 
the sense of (2.13). 

They are expressed through pa(r ,  z )  by thc relations 

i 'Pa 
4, 3.z 

wa = --exp (inq), qa = w,+n, n = 0, f 1, f 2 ,  

The function p ,  satisfies the equation 

(2.15) 

In the 'vector' subscript a = {n, Z}, the integer 1 numbers the eigenfunctions of (2.14), 
(2.15) for each given value n. The existence of solutions of (2.15) satisfying the 
boundary condition u, = 0 leads to the restriction lqal < 2. 

Substituting (2.11) in ( 2 . 9 ~ )  (the continuity equation and the boundary conditions 
are satisfied automatically) and performing scalar multiplication of this equation by 
ua, we obtain thc system 

(2.16) 
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We use the formula 2TA = aT/&p, which may be obtained from (2 .9) .  The interaction 
coefficients V, satisfy the condition 

v,, = V& (2.17) 

and differ from zero only for eigenfunctions with wavenumbers n and n f 2 .  So (2.16) 
consists of two independent systems for odd and even values n. Notice also, that  
(2.16) is a generalized eigenvalue problem for s. The transformation to the 
conventional form may be done by reversing of the operator (P,&up++VaB) in (2.16). 

Application of perturbation theory with the parameter 6 to (2.16) shows that 
corrections to wnl have an imaginary part of first order in e only if onl = w , + ~ , ~  
or w* = wnl = wn-2,1". For example, in the latter case we have qnl > 0 and qn-2,1" = 
qnl - 2 < 0, and the correction for a degenerate eigenvalue w* is 

(2.18) 

Another variant of the perturbation theory for the problem (2 .9)  was presented by 
Vladimirov et al. (1983, 1988). We confine ourselves to the Galerkin approximations 
taking into account only large-scale disturbances in (2.16), having in mind a 
comparison with the results of experiments. 

3. Instability in an elliptical cylinder 

The boundary conditions for (2.15) in the case of an elliptical cylinder are 
3.1. Two types of instability of elliptical rotation 

apU/az = 0 ( z  = O,L/R),  43ap,/i3r+2np, = 0 ( r  = 1 ) .  

The solution of (2.15) is 

pa = - (4-q:) Jn(ha r )  cos ( k ,  z ) ,  

4kb 
qah,Xn(h,)+2nJ,(h,) = 0, 4: = ~ h:+k;' 

J B+ = J n * i ( h , r ) ~ n ~ i ( ~ a , r ) r d r ,  a' = (n',m',j').  
- J, 

The subsystems from (2.16) are independent for different values of m, and summation 
occurs only on subscripts n' and j'. At the first order of perturbation theory, for 
6 < 1, instability is possible only for interacting modes with neighbouring 
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FIGURE 1.  The dependence on k of the two first eigenvalues w in (3.1) for the azimuthal 
wavenumbers n = 0 and n = -2 .  

w 

frequencies. Let us consider the frequencies w, and w,. so that 0,. x w, and n’ = n + 2 
or n’ = n-2. At first order, the systems (2.16) may be reduced to the form 

which leads to the quadratic equation 

( 1 - E 2 )  s2 - [w, + w,, + E2(n  + n’)] s + (0, w,. -EE2nn’) = 0, (3.4) 

.The unstable disturbances have a growth rate u and a frequency w ,  (8 = w zk iu), 

[w,-wa,+E2(n-n’)]2+4E24aq,,  
lJ2 = - 

4( 1 -E2)2 

w, + w,. + E2( n + n’) 
w =  

2( 1 -E2)  

(3.5) 

The expression for the growth rate determines the regions of instability for the 
parameters (LIR, E ) ,  where the flow is unstable with respect to disturbances with 
azimuthal wavenumber n and n‘ = n + 2 with an accuracy of order e2. 

So? for given cylinder geometry, the kind of unstable disturbance is connected with 
the distribution of natural frequencies (2.14) for a fluid rotating as a solid body 
(2.12) : it follows from (3.5) that instability is possible only if (w,-wa.) = O(E) .  The 
structure of this distribution is defined by (3.1). 

The roots of (3.1) for given wavenumbers n, k and given the sign of q are placed 
between the roots of the equation J,(h’) = 0:  

hhj < h,j < hh,j+l. (3.6) 
The general character of the dependence of the first two eigenvalues ( j  = 1,2)  on 

the wavenumber k for overlapping regions of the wavenumbers wn3 for n = 0 and 
n = -2, is shown in figure 1 (compare Tsai & Widnall 1976). The points where the 
curves cross correspond to the corner points a t  B = 0 in the region of instability in the 
plane of parameter {L/R,  E }  (figure 2a). 
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0.3 0.1 0 0.1 0.3 
E 

0.2 0.4 0.6 0.8 
F 

FIQURE 2. (a) The regions of large-scale elliptical instability in an elliptical cylinder (right) and a 
three-axis ellipsoid (left). Zr(n,n’) denote the types of unstable disturbances: n and n’ are the 
azimuthal wavenumbers, m is the number of eddy structures on the z-axis. 1 is number of times the 
sign of the w-velocity changes on the r-axis. The thick vertical lines and stars indicate the intervals 
and values of parameters of corresponding experimentally investigated instabilities. The contours 
for each region are plotted in the interval 0.1 (in dimensionless variables (2.4)). (0) Comparison of 
the different approximations for the region Zi(1, - 1 )  of ( a ) .  -, the  approximation for (2.16) 
with n, n’ = + 1 ;j,f = 1 ;  ----, the  approximation for (2.16) with n ,  n’ = & 1. f3, + 5 ; j , f  = 1-6; 
. . . ., the  approximation rorresponding to  Waleffe‘s solution : - .- .-. the  Galerkin approximation for 
(2.7) with n,n‘ = 1. 

The condition of coincidcncc of thc frcyucncics for wavenumbers n and n - 2  is 

, = 2. 
2k 2k + 

(k2  + hij): ( k 2  + h&.)s 
(3.7) 

From (3.7) follows the inequality 

which shows that with increasing n the vertical size of unstable eddies decreases 
(from (3.6) it follows that h,, + 00 for n + 00) .  

The wavenumbers n = 1 ,  n’ = - 1 and n = k2, n’ = 0 yield the large-scale 
perturbations of the velocity field. In the first case, the frequency curves in figure 1 
are symmetrical with respect to the line w = 0. Therefore, according to (3.5), 
instability with w = 0 to  the first order in E takes place as a result of the interaction 
of perturbation of equal scale. These regions of instability are defined by the corner 
points L / R  = 4 3  nm/hj, where h, are the roots of the equation hJ,(h) + J,(h) = 0. 
The values L/Rm = 1.9898 and 0.956 correspond to  the two first roots of this 
equation. 

Calculation of the growth rate according to (3.5) for the above sizes of cylinder 
gives (to first order in 6) 9 h:+l 

0- = -~ 
8 2h:+ 3” 

which is identical to the result of Vladimirov, Ribak & Tarasov ( 1 9 8 3 ~ ) .  

(3.8) 
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E 

FIQ~JRE 3. The regions of instability in an elliptical cylinder : the two-term approximation (3.3) for 
a = ( -  1,1, l ) ,  a’ = ( I ,  1,2) (curves 1 ) ;  a = (0,1, l ) ,  a‘ = (2 ,1 ,2)  (curves 2 ) ;  a = (0 ,1 ,2) ,  
a’ = (2 ,1 ,1)  (curves 3). Dashed lines show the approximation for (2.16) with n,n’ = f 1 ,  +3,  + 5 ;  
I ,  1’ = 1-6. 

The corresponding instability regions for an elliptical cylinder are shown on the 
right-hand side of figure 2 (a) .  They were calculated from (3.4) for j = 1,  m = 1 , 2  and 
j = 2, m = 1. The regions are denoted by the symbols Cr, where m indicates the 
periodicity of the perturbation on the z-axis, and 1 is the index of the root of equation 
(3.1). Therefore, 1- 1 is equal to the number of sign changes of the axial velocity w 
along the r-axis, and 1 can be regarded as a number of ‘eddies’ on the r-axis. 

The region of large-scale instability for disturbances with even numbers n = 0, f 2 
with corner point L / R  = 1.35, is also presented in figure 2(a) .  The development of 
this instability is accompanied by oscillations with frequency of order of 1 (in non- 
dimensional variables). In  the cases considered, instability is determined by 
interaction of eddies of similar scales. If these scales differ significantly, the width of 
the instability regions and growth rates are smaller by more than an order of 
magnitude than the region Zp. For illustration, such regions for n = - 1, n‘ = 1 
(curves 1 ) ;  n = 0, n’ = 2 (2,3) a n d j  +j’ are shown in figure 3. 

Similar instability modes with odd values of n for an unbounded domain were 
found numerically by Pierrehumbert (1986) and analytically by Waleffe (1990). For 
the Waleffe solution, we must consider the modes with h,+m in (2.16). It follows 
then from (3.8) that  the value of the growth rate for small E ,  (T = 9 ~ / 1 6 ,  does not 
depend on the perturbation scale. 

The main difference between instabilities in bounded and unbounded flows is that  
the interaction between modes of various scales vanishes for the latter case, i.e. 

In this limit case the system (2.16) may be reduced to Waleffe’s system describing the 
instability of the unbounded flow, with the help of the change ha+ h, k2-+ k2(1 -e2), 
C,, -+ (sf n) Cnm. Hence, the oscillatory instability of unbounded flows within the 
framework of the model (3.3) may be connected only with the interaction of 
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the equal-scale modes in the radial direction (compare Waleffe 1990), where the 
disturbance scale h does not depend on the wavenumber n). 

It may be noted that the boundaries of the instability region for E + O  give the 
same ratio h2/k2 = 3 for both bounded and unbounded flows. The values h and k are 
defined by the geometry of the cavity in which the elliptical rotation of fluid is 
unstable with respect to disturbances with wavenumbers n = f 1.  

Of course the system (3.3) in which only the interaction between two modes is 
considered (the two-term Galerkin approximation) is the simplest and at  first seems 
very rough for the description of the instability areas. A description of instability in 
the framework of the simplest systems is impossible for those areas L / R  where the 
eigenvalue spectrum is very densely distributed. In  this case the large-term 
approximation should be used. (For the instability in the Coriolis force field 
considered in $5 the coincidence and proximity of the eigenvalues w, can occur for 
several modes with different values of n,j.) 

The validity of the two-term approximation was verified by considering the high- 
order terms in the decomposition (2.11). Approximations of the area Zi(1, - 1 )  are 
shown on figure 2 ( b )  obtained with the above-mentioned terms n, n' = f 1 ; j , j '  = 1 
taken into account (solid lines) and from solving system (2.16) in which n, n' = & 1, 
f 3, 5 ; j,p = 1 4  (dashed line) (including the other additional terms does not alter 
this instability region in practice). 

It follows from figure 2 (b )  that there is a variance between the two approximations 
only if 6 > 0.5, so that the areas shown in figure 2 ( a )  describe the linear instability 
of the considered elliptical rotation sufficiently exactly. 

The system (2.16) with n, n' ;j,j' as above reveals another instability region, 
including the dashed-line area in figure 3 that corresponds to  the region 1. In  this case 
the two-term approximation (3.3) with modes n = - 1, j = 1 ; n' = 1,  j' = 2 is valid 
only if E c 0.1. 

The solution (2.11) may be represented as the superposition of the plane waves 
(2.8). In the variables (2.4) the wavevector k( t )  has the form 

k(t)  = (h cost, h sin t ,  k), (3.9) 

and with the help of the known relation 

J,(hr) = - ednr  exp (ihr cos 7) d7, 
2n: 

we obtain the following expression for the w-velocity : 

1 m 
w(r , t )  = eiLzCC,(t)J,(h,r)ein" = C ( -  i)"C,(t)einKexp[ika(~).r]d7. (3.10) 

a a 

For disturbances with the single scale ha = h, which correspond to the two-term 
Galerkin approximation with wavenumbers n = f 1 for the flow in a cylinder, (3.10) 
takes the form 

w(r,  t )  = eut 1; & ( t -  7) exp [ik(t- 7) . r ]  d7, (3.11) 

1 
&(t) = - ( -i)nCLeint, (C,(t) = eutC:). (3.12) 

n-*1 
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As shown by Waleffe (1990), (3.11) is also the solution for unbounded flow, if &(t) and 
u are determined by an equation of Ince type originating from (2.7) and (3 .9 ) :  

(1  --a cos 2t) 4 + 4a sin 2td + czi, = 0,). 

a = 4€h2/ (h2+k3,  c = 4k,2/ i i2+~-3.J 
(3.13) 

Then (3.12) is the first term in the perturbation theory for E in (3.13). Accordingly the 
growth rate Q has an accuracy of order c2, which allows the possibility of using the 
unbounded flow theory connected with the representation (2.8) for the determination 
of the instability area Z( 1, - 1)  in the cylinder. 

For a comparison with the area Z : ( l ,  - l ) ,  the instability area for unbounded 
elliptical rotation following from Waleffe’s solution for (3 .9)  is marked in figure 2 ( b )  
(points) (our parameters k = k, and h = in (3.1)-(3.8) are related with Waleffe’s 
parameters y and K by k = y ,  h = K( 1 - 8 ) s ) .  It is significant that h is not arbitrary as 
for unbounded rotation, but is defined by (3 .1) .  

The limits of the instability area Zi (1 ,  - 1) obtained by the Galerkin method for 
(2.7): which is considered together with the boundary condition u, = 0 ( r  = l ) ,  are 
also shown in figure 2(b)  (dot-dash lines). Within the perturbations with 
wavenumbers n = f 1 we can obtain (Gledzer et al. 1980) the equation governing the 
area of instability mentioned : 

3k2 = ( l + & ) h ; ,  h ,J , , (h , ) ( l+$)+J , (h , )  = O .  

Comparing the regions of the wavelike instability for disturbances with wavenumbers 
n = 1 obtained by the methods mentioncd above we find that consideration 
of the higher decomposition harmonics weakly changes the borders of the instability 
area, and the correlation between the vertical and horizontal scales h/k  in it is rather 
well determined by the unbounded flow theory. 

3.2. Some experimental results on elliptical flow in a cylinder 
This account of the experiments and interpretation of their results as elliptical 
instability is from A. M. Obukhov. 

The experiments were carried out by the following method. A transparent 
elliptical-shaped container with a liquid (salt water) was set in rotation, which 
continued for several minutes until the liquid and the container were moving as a 
single solid body, and then the container was brought suddenly to rest. The liquid 
continued to move by inertia with a spatially constant vorticity at  the initial time. 

The main semi-axes of the cylinder were 5 cm and 6 cm and the height could be 
varied from 8 cm to 37 cm. The rotation speed usually changed from 200 to 500 
r.p.m. Visualization of the flow was achieved by markers, which were small balls with 
a density equal to the liquid density. 

Contrary to the recent experiments by Malkus (1989) where the fluid motion was 
set up by rotating the walls of an elastic cylinder, in these experiments the boundary 
layer begins to form immediately after stopping. Additionally, two weak eddy flows 
are formed around the ‘poles’ arising from the Ekman boundary layers and 
corresponding circulation. However, this perturbation of the elliptical flow probably 
does not greatly influence the large-scale instability, because two distinct pictures of 
the secondary flows are observed for very similar heights of the cylinder. 
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FIGURE 4. Photographs of eddy flows formed as a result of elliptical instability in an 
elliptical cylinder. 

In the first case, if the sizes of the cylinder are within the stability regions, the 
rotation of fluid is slowly decaying over a few minutes. In the other case, we have a 
fast development of flow with vertical velocity. 

Photographs of different vortex flows arising through the process of elliptical 
rotation hydrodynamic instability are shown in figure 4 (Chernous’ko 1978 ; Boubnov 
1981). The range of variation of L / R  (in figure 2a,  E = 0.18) for which disturbances 
(2.1 1) with m = 1 , 2  were observed, are marked by thick vertical lines in figure 2 (a ) .  
It is seen from comparison with the theoretical results, that for regions Zt and Z; 
there is agreement with the theory, although with increasing L / R  there is a 
discrepancy relative to predicted intervals. 

This effect is probably connected with the perturbations of elliptical flow arising 
after stopping of the cylinder. There are at least two types of perturbation. The first 
is the small-scale disturbances generated by the wall shear layer and their 
instabilities; the second is the large-scale flow with the Ekman circulation motion of 
fluid. The thickness of the shear layer is estimated by the expression S = (vt);. It is 
small in comparison with the cylinder radius for the characteristic time of 
development of the elliptical instability t ,  = s/D. The scale of circulation motion is 
nearly of the size of the cylinder, and hence this motion forms the initial large-scale 
disturbances, which may develop or not depending on the character of the system 
stability and the parameters of the cylinder. 

For L/R regions outside the solid strips, the elliptical rotation is stable with 
respect to odd wavenumber n disturbances. 

The character of visually observed secondary flows in region Zy corresponds to the 
general type of velocity field disturbances, near to the elliptical rotation around a 
horizontal axis in the centre of the eddy. 

We have not succeeded in identifying experimentally regions of oscillation-type 
instability perhaps because of the condition a / w  < 1 (see also 94.3). 
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4. The development of instability in an ellipsoidal cavity 
4.1. General case 

Let us consider the elliptical rotation (2.1) around the z-axis in a three-axis ellipsoid 

(x/a)2 + (y/b)Z + (z/c) ’  = 1. (4.1) 

In coordinates (2.4) it  transforms into the surface 

r = f (z’R/c)  = ( 1  - ( ~ ’ / l ) ~ ) i ,  1 = c /R,  2’ = x/R.  (4.2) 

System (2.9) can be investigated by expressing its solution as a series of 
eigenfunctions of the problem (2.12) with boundary condition (we shall omit the 
primes) 

The boundary condition for pa that  follows from (4.3), (2.14) is 

u,r+wz/12 = 0 (r2+z2/12 = 1) .  (4.3) 

apa 2n h2zi?pa 
r-+--pa--- = 0 ( r2+z2/12  = l ) ,  

qa 12 az (4.4) 

I h2 = (4-q3/qi.  

Separation of variables for (2.15) and (4.4) can be obtained in the new variables 
(Greenspan 1968) 

r = d [ ( 1 - u 2 ) ( 1 - p 2 ) ] ~ ,  z = dhap, d2  = (1+E2/h2), (4.5) 

by which the region ( r  2 0, r2 +z2/Z2 6 1) is mappcd into a rectangle (-re C u C ue, 
ue < p  C 1) .  

In  these variables, (2.15) has the form 

(Lv-Lp)Pa = 0, I 
v = u,p. 

a 2  a n2 
L, = (1-v2)--2v--- 

a v 2  aV 1-v27 

The solution of (4.6) should be finite a t  ,u = 1 ( r  = 0)  and satisfy conditions that 
follow from (4.4) on the other sides of the rectangle 

(A,-A,)pol = 0, I 
A, = [ l -  v2( 1 + h2/12)]4 (1 - v2) v--- a 2n l 2  J . j  [ a V  q a l + h /  

(4.7) 

The solution o f  (4.6), (4.7) has the form 

Pa = P k l ( 4  P#pL (4.8) 

where Pkl are thc associated Legendre polynomials ; m = Inl, In1 + 1, . . . . The value of 
ue is defined by (4.7) as 

with q, related to 1 and the roots of (4.9) by 

q: = 4 4 / ( 1 2  + ( 1  - 1 2 )  r:). (4.10) 

For given m and n equations (4.9), (4.10) generally define several values of (T, and 
q,, which we shall mark with the subscript j, hence 01 = (n, m , j ) .  The eigenfunctions 
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u,,p, (2.14) (4.8) are polynomials of degree m- 1 in Cartesian coordinates. Among 
them, there are two velocity fields form = 2 and n = 1, which arc analogous to (2.1), 
and eight quadratic fields. They are obtained with m = 3 and n = 0, 1,2. For m = 3 
and n = 1 there are two roots ue and, consequently, we obtain four quadratic fields 
while separating the real and imaginary parts in (2.14). Only one root ue corresponds 
to both n = 0 and n = 2, and this leads to two velocity fields in each case. 

The polynomial representation is connected with another method of stability 
investigation in an ellipsoidal cavity that originates from the Helmholtz equations 

= V x [ u , f 2 ] ,  a = v x u .  (4.11) 

We shall write a system of basic functions that describe a non-divergent velocity field 
with powers of coordinates not larger than two, the normal component of which 
vanishes on the surface of the ellipsoid (4.1). There are three linear fields among 
them : 

w, = bz‘j-cy‘k, wz = -az’i+cx’k> w3 = ay’i-bx’j, 

x‘ = x / a ,  y‘ = y/b,  z’ = z / c .  

aa 
at 
- 

w5 = a( 1 - x ’~  - 2 ~ ’ ~  - 2 ~ ’ ~ )  i+ bx‘y‘j+ cx‘z’k, 

w, = ax‘y’i+ b(z’2-x‘2)j-cy’z‘k, 

w, = ax‘y’i+ b( 1 - 2d2 - y’* - 2 d 2 ) j +  cy’z’k, 

we = -ax’z’i+by’z’j+c(x’2-y’2) k :  

w, = ax’z’i+by’z’j+c(l-2~’~-2y’~-z’~)k, 

) (4.13) 

w,, = ay’z’i-cx’y’k, w,, = -bx’z‘j+cx’y’k.) 

The inhomogeneous fields w,, w,, w,  can be obtained from the toroidal fields for a 
sphere (Hill spherical vortex) by deforming a sphere into the given ellipsoid. The rest 
of the fields in (4.12), (4.13) are solenoidal functions of the form V xgs ,  s = ( x /az ,  
y/b2, z / c 2 ) ,  where g is a linear or quadratic function of coordinates. Fields of this 
form are tangential to any ellipsoid similar to  (4.1). Instead of ficlds w,, w,, wg we 
may take inhomogeneous vector functions V x V x (1 - p )  gs, g = x ,  y, z ,  p = 
x2/a2+y2/bz+z2/c2, which can also be used to obtain fields of a higher degree. 

The fields (4.13) correspond to vector functions defined by (2.14) and (4.8) after 
separating the real and imaginary parts, so that for m = 3, n = 1 we have fields 
w4-w,; for m = 3, n = 0 we have w, ;  for m = 3, n = 2, we have we. Linear 
combinations of functions with m = 3, n = 0 and m = 3, n = 2 correspond to wl0 
and wI1. 

4 2.  Wave-type instability 
Let us linearize the (4.11) with respect to uo = -Rw3, f2, = V X U ,  = const., 
u = u,+u’, 

a -v xu’ = v x [u,, v x u’ ]+V x [u’, no]. 
at 

(4.14) 

Since u, is linear in the coordinates, (4.14) is homogeneous in x ,  y, z .  Therefore its 
solutions may be sought in the classes of uniform functions. 
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Let us solve this equation in the form of superposition of basic fields (4.12), (4.13) 
not higher than the second power by coordinates with time-dependent coefficients. 
Then the right- and left-hand sides of (4.14) written in components are the sums of 
constant values (with respect to x, y, z )  and linear functions of x, y, z. By setting the 
values and coefficients in the corresponding functions of x, y, z to zero we obtain the 
dynamic system that presents the solutions of (4.14). Thus the derived systems 
(4.15), (4.18), (4.23) are obtained. 

For linear functions (4.12) we have the equations 

(4.15) 

u / = w 1 w 1 + w 2 w 2 ,  

do, - d w  
dt dt 

(c2+b2)- - (b2-c2)S2w2, (c2+a2)> = (c2-~')Qwl, 

which together with the equation for 0, 

dS2 
dt 

(a2 + b2) - = (a2 - b2) w1 w2,  

are the known explicit solution of (4.1 1) in the class of functions that are linear in the 
coordinates. If Q = const., Iw1/S21 4 1, Iw2/S21 Q 1, (4.15) also yields the known 
conditions of elliptical instability in the class of linear fields: for a > b the value c 
must satisfy the inequality b < c < a ,  i.e. the fluid rotation around the middle axis 
of the ellipsoid is unstable. 

I n  another form, this inequality is 

(4.16) 
2c 
R 

The functions wl, w2 are the fields (2.14), (4.8) with azimuthal wavenumbers n = f 1 ,  
and the axial velocity w does not change its sign along the z-axis; hence, the region 
of instability (4.16) corresponds to the region Zi(1,l) of unstable elliptical rotation 
in a cylinder (see figure 2a). 

The Galerkin method (3.5) for the modes (2.14), (4.8) with the wavenumbers 
m = 2, n = f 1 gives the same bounds of instability with a discrepancy in the growth 
rate of the order 2. 

Let us consider the quadratic disturbances. The exact solution of (4.14) is the field 
(recall that  w4-w7 correspond to (m = 3), n = 1 in connection with elliptical 
cylinder) 

u/ = w, wi, (4.17) 

2 ( 1 - € ) k - <  2(1+€)$. 

7 

6-4 

if the time-dependent parameters q, i = 4-7, satisfy the linear system 

I d 
dt = S2((3b2+2a2) w6+3b2w,), 

d 
dt 

d 
dt 

d 

- ( (2a2 + 2) w4 + (4a2 + c2) w 5 )  = Q( (4d-C2) w, - (2a2--2) w e ) ,  

(4.18) 

-((2b2+u2)w6+ (4b2+a2)w7) = S 2 ( 3 ~ ~ ~ , - ( 3 ~ ~ + 2 b ~ ) ~ , ) ,  

- ((2b2 +c2) w6 - (4b2 +c2) w7) = 0((2b2-c2) w,+ (4b2-c2)w5). 
dt 
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FIQURE 5. Photographs of a two-eddy flow for an ellipsoid with parameters 2clR = 3.62, 
E = 0.38. The interval between the frames is 0.44 s. 

We arrive at the equation for the dimensionless growth rate s (wi = exp (sQt) w ! ) :  

As4+Bs2+C = 0, (4.19) 

A = [(2a2+b2) (4a2+c2)+(2a2+c2) (4a2+b2)] [(2b2+a2) (4b2+c2) 

+(2b2+c2) (4b2+a2)], 

C = [(3b2 + 2a2) (c2-4u2) + 3b2(c2 -2a'))l [(3a2 + 2b2) (c' -4b2) + 3a2(c2 -2b2)]. 

The solution for s has the form 

s2 = ( -B+(B2-4Ac) : ) /2A .  (4.20) 

Hence for instability (s > 0) ,  it is sufficient that C < 0, since A > 0. That leads to  the 
range of parameters of an ellipsoid for which the elliptical rotation is unstable under 
perturbations (4.17) (Gledzer & Ponomarev 1977 a)  : 

9b2 + 4a2 < c2 < a2 9a2 + 4b2 
b2 3a2+b2 3b2+a2 ' 

(4.21) 

The development of unstable modes described by (4.18) gives rise to a two-eddy 
pattern of motion on the z-axis. The eigcnvalue s is real, therefore this type of 
instability corresponds to the one discussed in ss3.1 and 3.2. 

The other form of (4.21) is 

[(1-~)(13+5s)/(l+e/2)]$ < 2c/R < [ ( 1 + ~ ) ( 1 3 - 5 ~ ) / ( 1 - ~ / 2 ) ] ~ .  (4.22) 

The fields w,-w, also have the azimuthal wavenumbers n = f 1 with the axial 
velocity w changing sign once along the z-axis; hence, this region of instability is 
qualitatively the same as the region C:( 1 ,  - 1 )  of unstable rotation in the elliptical 
cylinder. 

In  figure 2 (a) the unstable regions (4.16), (4.22) in coordinates (2c/R, E )  are denoted 
by I and 11, respectively. The parameters of ellipsoids for which the experiments 
(Gledzer et al. 1974; Gledzer & Ponomarev 1977a, b )  were performed are marked by 
stars. Rotation around the largest axis is stable for ellipsoids with 2c/R = 2.54, 
E = 0.17 and unstable for 2c/R = 3.62, E = 0.38 and 2c/R = 3.06, E = 0.50. Some 
experiments were also performed by Roesner & Schmieg (1980), who confirmed 
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the instability for ellipsoid 2c lR  = 3.06, 8 = 0.5 and observed the stability for 
cllipsoid 2c lR  = 2.86, E = 0.3. A picture of two-eddy secondary flow in the ellipsoid 
2clR = 3.62,  e = 0.38 is shown in figure 5. 

4.3. Oscillation- type instability 
Another solution of (4 .14)  in the class of quadratic fields has the form (the fields 
w8-wll correspond to m = 3 ,  n = 0 and n = + 2  for elliptical cylinder) 

11 

UI = c wi wi, 
t-8 

d 
- ( ( 2 C 2 + b 2 ) ~ 8 + ( 4 ~ 2 + b 2 ) ~ g )  = -S2((2c2+ b 2 ) ~ 1 1 + ( b 2 - 2 ~ 2 ) ~ , 0 ) ,  
dt 

I (4 .23)  

d 
- ( ( 2 c 2 + a 2 ) w 8 - ( 4 c 2 + a 2 ) w g )  = S2((2c2+a2)wlo+(a2-2c2)wll), 
dt 

d 
- ( (2c2+b2)w11  - (2c2+a2)wlo )  = S2(8c2w8+2(b2-a2)09),  
dt 

d 
- (b2wl1 + a2w,,) = 2 0 ( a 2  + b2) wg. 
dt 

From (4 .23 )  the equation for the eigenvalue s follows, 

AS4+BS2+C = 0, 

A = K ( 8 C 4 + 3 C 2 3 2 + 3 C 2 U 2 + U 2 b 2 ) ,  B = 4 ( ~ ( 8 ~ ~ + K ) - C ~ ( a ~ + b ~ ) ~ ) ,  

C = 16c4(a2 + b2)2, K = a2b2 + b2c2 + c2a2. 

The solution of (4.24) is 

and since AC > 0, the real part of one of the roots of s is positive if 

s2 = (-Bf (B2-4AC)i)/2A, 

B2-4AC < 0. 

(4 .24)  

In variablcs C = c 2 / K 2  and E this inequality takes the form 

( 7 ( S P + ~ ) - 4 c ) ~  < 16c7(8$+41;+7) ,  7 = 2 [ + l - e 2 .  (4 .25)  

In figure 2 ( u ) ,  this region of instability is denoted by 111. It may be shown as 
corresponding to the region Z:(0,2) for the elliptical cylinder. 

Let us consider the behaviour of eigenvalues s(e, 1;), if s+O in the vicinity of the 
corner point f of the region of instability 111. For E = 0, the value co satisfies the 
condition (4 .25) ,  hence we have the equation 

16G-4c0- 1 = 0, c0 x 0.596. (4 .26)  

If E = 0, 5 = 1;,, it follows that B = 4AC, hence s2 = -B/2A. Using (4 .26 ) ,  we have 
.s2 = -4C0/(2C0 + 1) w - 1.09, i.e. the imaginary part of the eigenvalue is not zero. So, 
the instability for parameters E and 6 in region 111 (figure 2 a )  is of the oscillation 
type, differing from the instability described by (4 .16) ,  (4 .22)  (regions I and I1 in 
figure 2 a ) .  This type of instability is difficult to observe experimentally. 

Nevertheless, some indications of this instability may be detected on noting that 
superposition of the fields w8, wg, wl0 ,  w l l ,  which correspond to dynamical variables 
of the system (4 .23 ) ,  in the centre of ellipsoid z = y = z = 0 has only the vertical 
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FIGURE 6. The oscillation-type instability for 2c/R = 1.6, E = 0.18. 

(along z-axis) component of velocity ck. Therefore, the oscillations of fluid particles 
in the centre have to occur in the vertical direction, perpendicularly to the plane 
of fluid rotation. This may be observed in the experiments for an ellipsoid with 
c/R = 0.8, B = 0.15 (figure 6). 

4.4. Elliptical instability and the forced motion of Jluid within an ellipsoid 
So far, we have considered the solutions of the linear problem of basic flow stability 

(2.1), where it was assumed that Q = const. For the nonlinear problem, it is 
necessary to close the system (2.16) by an equation for changing IR. It is natural to 
use the Galerkin method retaining only a finite number of interacting modes - ‘active 
modes’ in the dynamical system obtained. 

The simplest dynamical system describing the evolution of the flow in an ellipsoid 
must include the modes presenting the ‘ basic flow ’ and unstable disturbances. For 
elliptical rotation around the middle axis b, such a system has the form 

(a2 + b 2 )  52 = (a2- b2 )  w I w z -  (a2 + b 2 )  hQ, ( 4 . 2 7 ~ )  
(b2 +c2) hl = ( b 2 - c 2 )  Qw,- (b2 +c2)  hw,, (4.27 b )  
(c2 +a2)  h2 = ( c 2  - u z )  Qw, + (a2 + c2) F .  ( 4 . 2 7 ~ )  

Here, the term (a2+c2)F models the force that rotates fluid around the middle axis 
b,  and h is the friction coefficient. 
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More generally, there is also a damping term - A(a2 + c') w, in the equation for w,, 
but for large values of F the influence of this term on the steady states of (4.27) (see 
(4.29), (4.30)) will be negligible. 

The system (4.27) may be represented in the form (we assume here that c < b < a )  

h+ =pw,w+-Aw+, h- = - p w , w - - A ~ - ,  h2 = q(w$-oZ)+F,  (4.28) 

w &  = H 1 5 2 f H 2 w l ,  H ,  = 1(b2-c2) (az+b2)]~, H ,  = [(az-b2) (b2+c2)]~, 

H l  H2 a2 - c' 
'= (a2+b2)(b2+c2) '  '= 4(a2 + c2) H ,  H ,  * 

The system (4.28) has two stable steady states that differ in the sign of w- (we 

0- = (F/q) i ,  w+ = 0, w, = -Alp,  (4.29) 

w- = - (F/q) i ,  w+ = 0, w2 = -Alp.  (4.30) 

It is important that if (4.28) is put into one of the states (4.29), (4.30) and then the 
force F is changed arbitrarily, the sign of w- cannot be changed during the process 
of motion, because the signs of w+ and w- are conserved : for regular w z ( t )  the solutions 
of (4.28) have the form 

suppose F > 0) : 

w+(t)  = o+(O) exp ([ ( p w , ( ~ )  - A )  d ~ )  , w-( t )  = w J 0 )  exp 
0 

But experiments (Obukhov, Gluckhovsky & Chernous'ko 1976) have shown that 
for a certain time interval from the cut-off of the force F the hydrodynamic system, 
for which the model (4.27) is used, transfers between the states corresponding to 
(4.29) and (4.30). The experiment on an ellipsoid with axis ratio 5 : 6 : 7 consisted of 
exciting, using a thin stirrer, elliptical rotation around the middle axis b = 6. This 
rotation rapidly lost stability (see (4.16)) and transferred to one of the stable 
regimes which is a superposition of elliptical rotations around the long and short axes 
of the ellipsoid. Then the rotation of the stirrer was stopped after a certain interval 
of time, when the initial motion was sufficiently intensive. On restarting the rotation 
of the stirrer in the same direction, the system may transfer to another steady 
regime or not, depending on the length of time that the external force is cut off. 

Notice that the stationary states (4.29) or (4.30) are superpositions of rotations 
around all three axes of the ellipsoid. For a given axis ratio the rotation around the 
c-axis is unstable with respect to perturbations arising from the velocity fields 
we-wll. The development of these disturbances is described by (4.23), and their 
action on (4.27) is given by an additional term in the right-hand side of ( 4 . 2 7 ~ )  that 
may be derived with the help of the Galerkin method used with the velocity field 
(4.33) below, 

4 = (b2-a2) ~ ~ e ~ ~ l o + ~ l l ~ + ~ , ~ ~ l o - ~ l l ~ ~ ~  (4.31) 

Equation (4.27) together with (4.23) forms a closed system for parameters SZ, wl, w,, 
W E - W l l .  

Note that the system (4.23), (4.27) conserves the integral (for A = 0, F = 0) 

E = (a2+b2)SZ2+El+E,, (4.32) 

El = ( b 2 + C 2 ) w ; + ( C 2 + a ' ) W ; ,  

E2 = (c' + a2) wf0 - 2 c 2 ~ , ,  wI1 + (c2 + b2)  w : ~  + ( 4 2  + U' + 6') W: 

+ 2(b2 -a') we wg + (tic2+ U' + b') w:, 
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which is the kinetic energy corresponding to the velocity field 

(4.33) s 11 

u = u,+w, W, + w ,  w,+u’, u’ = wi wi ,  E = $ d d r .  
i t 4  

The conservation of the E integral (4.32) in (4.23), (4.27) in the single way gives the 
type of the additional term which needs to be introduced into (4.27a). So instead of 
the Galerkin method discussed above we may use the conservation of the energy 
integral E in the Galerkin approximations and system of the type of (4.23). 

The equations described above were used for modelling the transitions from one 
steady state of the hydrodynamical system to another. 

The form of the dissipation terms is defined by the experimental evidence that the 
relative values of SZ, wlr w ,  are not affected by the value of external force F (see 
Obukhov et al. 1976), which leads to  a quadratic friction h = aE! (a = const.). 
Equations (4.23) also contain dissipative terms that can be obtained by replacing the 
operator dldt by (d/dt+&), where p = const. 

As was established in $4.3 for conditions of instability (4.25), the eigenvalues SQ 

have the form (s,+ is,) 52 and ( -srf isi) a,  s, > 0, si > 0. Converting to the basis of 
the corresponding eigenvectors e, e*, f, f *, (4.23) with damping terms introduced 
may be represented in the form 

u‘ = C(t)e+C*(t)e*+D(t)f+D*(t)f*, (4.34) 

C = (s,+isi)QC-/3@C, D = (-s,+is,)QD--EhD, (4.35) 

where the new variables C, D are used instead of w i ,  i = 8-1 1 ,  in the quadratic form 
E,, (4.32), E, = E,(C, C*, D ,  D*). 

Now one can describe the behaviour of the system (4.28), (4.35) in the following 
manner. If sufficiently small initial perturbations wi exist, then the force F drives the 
system to one of the states (4.29) or (4.30), where h = aEf is defined by constant 
values of w l ,  w,. So w, in (4.29), (4.30) is modified as follows: 

a ((a’ + b2) F)t 
w,  = - 

2H,  (y(p2-a2(a2+c2))fr‘ 
(4.36) 

These solutions are unstable, and modes C and D (depending on the sign of s, 52) 
are growing from small initial values. Assume 52 > 0 (52 = const. the case SZ < 0 
is considered analogously) that corresponds to (4.29), (4.36). Then ID1 + O ,  and 
behaviour of C, C* is described by equations 

~ = ~ ( t ) e x p ( i s , ~ t ) ,  A = ~ , Q A - ~ I A ~ E @ , \  
(4.37) 

exp ( -isi at), O,O]. J 
As estimated above, si x 1,  s, 4 si. Hence, averaging (4.37) with respect to time 

yields the Landau equation 
A = s,QA-pe,IAIA, (4.38) 

where eo = (EE) = const. > 0 is defined by the geometry of the ellipsoid. This 
equation describes the development of disturbances u’ in the vicinity of a steady 
state (4.29), (4.36) and may be considered as an approximation for slowly changing 
functions of time Q ( t ) ,  ol(t), w,(t ) ,  A ( t ) .  

E, = E, [exp (isi at), 

1 

The growth of disturbance IA(t)l continues up to the value 
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Q. w 

FIGURE 7. The transition between the  regimes (4.29) and (4.30) in the dynamical system (4.27), 
(4.23) for parameters 8, wl, up, ws--wl1. 

hence using (4.34), (4.36) and appropriate averaging gives the approximate 
expression for q5 (4.31) : 

S2 

P 2  e i  ’ 
$J x (b2-a2)q5,IAl; = (b2-a2)Lq5’Q2, $J’= 0 

and q5, = const. is also defined by the semiaxes of the ellipsoid. 
Now (4.27) for Q is modified in the following: 

2 

( a 2 + b 2 ) h  = ( a 2 - b 2 ) w , w 2 - ( a 2 + b 2 ) a E @ + ( b 2 - a 2 ) $ J ’ ~ Q 2 .  
p” 

(4.39) 

Hence, the influence of the last term in (4.39) may be significant if the ratio s: /P2 is 
large enough. 

Indeed, for low values of /3 (for concrete numerical calculations using F = 1,  
01 = 0.05, p = 0.01) the transition between (4.29) and (4.30) occurs even for constant 
value of force F .  

Above some value of P this transition no longer occurs for a constantly acting force 
F ,  but a transition at the removal and subsequent re-establishment of the force takes 
place. The results of corresponding numerical calculations are presented in figure 7. 
They show the possibility of transitions between the steady regimes owing to  exciting 
the modes wg-oI1 and their action on the variables SZ,  wlr w2. 

In fact, in the system discussed, an indirect method of detecting the oscillation- 
type instability is realized. As mentioned above, the direct detecting of this 
instability is difficult because the growth rate to  oscillations of frequency ratio s,/si 
is small. 

5. Other applications 

5.1.1 Elliptical cylinder 

Q,, (2 .9a)  takes the form 

5.1. The inJluence of the Coriolis force field on the elliptical rotation 

In  a coordinate system bound to a vessel rotating at a constant angular velocity 

+ 2 f , A ~  = - V p ,  f ,  = f(l-e2)i ,  f =  Q,/Q. (5.1) 
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FIQURE 8. Relative positions of the spectral regions o, for wavenumbers n and n-2 
in the (w’, f,)-plane. 

The term 2feAu in (5 .1)  does not influence the form of the eigenfunctions of the 
problem (2 .12) ,  but changes the eigenvalues in (2.14) in a manner determined by the 
frequency shift on conversion to the rotating reference frame : 

4 = ( 1  +f , )q , -n ,  IQ,I < 2,  (5 .2)  

where the combination ( 1  +f,) arises from the terms 2/Au + 2f, Ru = 2( 1 +f,) Ru of 
equations (2 .9) ,  (5.1). 

Hence, for E 4= 0 we shall seek a solution of (5 .1)  in the form of the power series 
(2.11),  where w, are changed to  w: from (5 .2) .  As in the casef= 0, the instability is 
possible only for degenerate or adjacent eigenvalues for wavenumbers n and n f 2 .  If 
eigenvalues coincide, whl = w6-2,1,  = w;,  we have 

Qn-2.1’ = qnl-2/(1 +fe), I 
valid for fixed parameter L / R  as in the case (2 .18)  (see also Vladimirov, Tarasov & 
Ribak 1983b). 

The system (5 .1)  has growing solutions if 

qnl q n - 2 , ~ ’  < 0. (5.4) 

Figure 8 shows the relative positions of the spectral regions w i  for wavenumbers 
n and n - 2  in the plane (w:, f,). The regions in which inequality (5 .4)  is satisfied are 
delineated in the figure. They are formed by intersections of sectors I and 11,111 and 
IV, which are bounded by the half-lines 

w‘i-n--2 w’+n 
- 1 ,  - 2  d qn-2 c 0, f, = -- 1 ,  o < q n < 2 ,  

Qn 
f€ = 

qn-2 
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FIQURE 9. The instability regions for a flow in an elliptical cylinder in the (LIR, f,)-plane. Right- 
hand branches: ----, m = 1, n = 1; -, m = 2, n = 1 ; -. -. - m = 3, n = 1 .  Left-hand branches : 
m =  1.  n =  1. 

w'+n-2 w'+n 1, -2  < q n  < 0 ,  f, = -1 ,  O < q n - ,  G O ,  f,=-- 
Qn-2 Qn 

respectively. 
For f = 0, coincidence of the eigenvalues automatically guarantees satisfaction of 

inequality (5.4). 
The results of elliptical rotation stability analysis in the Coriolis force field 

corresponding to the disturbances Zy are presented in figure 9 for parameters 
{ f,, LIR} and fixed values of E .  The regions of instability reveal the same character- 
istics as those of Craik (1989) for unbounded rotation: there is the stable range 
-$ < f, < -+ for E + 0 ; the unstable regions for f, > - 1 are broader than the region 
for f, < - 1 ; and the last region is narrowed at LIR +0. Figure 9 shows that the 
Coriolis force may both change the type of the unstable disturbances and stabilize 
or destabilize the elliptical rotation. These processes were illustrated by the 
experiments of Boubnov (1978) in an elliptical cylinder with e = 0.18 and L/R = 4 
and 6, where secondary flows with 2 to 4 eddies were formed. The results of these 
experiments are presented in figure 10. 

The experimental results for L / R  = 4 are in good accordance with the theoretical 
curves on figure 9. The thick horizontal line at L/R = 4 gives the instability interval 
off,. With f, = 0.1, L / R  = 4 we obtain stability in accordance with figure l O ( f ) .  For 
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FIGURE 10. Photographs of the change in the nature of the unstable disturbances for L / R  = 6 :  
( u ) f = 0 . 1 ,  ( b ) f = O .  ( c ) f = - O . 0 6 .  (d ) f= -0 .12 ;  for L / R = 4 :  ( e ) f = O ,  ( f ) f = O . l .  

LIR = 6 however the coincidence occurs only when f ,  = -0.06 (figure 10c): this 
difference between theory and experiments is connected with the larger values LIR 
for which instability is experimentally observed than theoretically predicted values 
mentioned in $3.2.  The validity of this two-term approximation was verified by 
including the additional terms in (2.1 1). as in 8 3.1. This gave a high enough accuracy 
for the regions of instability connected with the interaction of the equal-scale modes 
at  8 < 0.5 and I f e l  < 1. 

For comparison, the results of calculations of instability intervals using (3.4), 
(3.1 1 )  from Craik (1989) are marked on figure 9 by thick vertical lines for f, = - 3 and 
0.5. The ratio of the vertical and horizontal scales of disturbances is connected with 
Craik’s parameter al0 by the relation k / h  = ale/( 1 -aTo)f? and the value of h is chosen 
as for the corresponding area on figure 2 ( b ) .  In  spite of these planar disturbances not 
being compatible with the wall boundary condition, a good coincidence of the results 
obtained by the two approaches is notable for A. > 0, although some deviations for 
f, < - 1 and considerably large E are present. 
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5.1.2. Ellipsoidal cavity 

The rotation of the ellipsoid as a whole, with angular velocity 52, around the 
z-axis, yields additional terms on the right-hand sides of (4.18) : 2Q,ab(o, - w , ) ,  
-452,ab(o8-2w,), -252, ab(w, +w, ) ,  452, ub(o, +2w,), respectively. Therefore B and 
C in the characteristic equations (4.19) are now functions of the parameter f = S2,/52 : 

C( f )  = [(2a2 -c2 + 2 x )  (3b2 -x) - (3b2 + 2a2 + x) (cz --a2 -4x)] 

x [(2b2--c2+2~)(3a2-~)-(3a2+2b2+~)(c2-4b2-4~)], x = 2fub. (5.5) 

Instability occurs when parameters a, b,  c satisfy the condition G < 0, and (5.5) yields 
thc regions of instability in the (c/R, e ,  f,)-space given by 

The projections of surfaces If(€, f,) on the (c/R,f,)-plane are shown in figure 11 as solid 
lines. The values of e are indicated near the curves. The two vertical lines joining the 
curves with equal values of E correspond to the range of c/R in which the rotation is 
unstable at given E and f6. Correspondingly, the horizontal lines define the instability 
range off, for fixed c/R and E .  

It follows from (5.6) and figure 11 that the instability in a fixed ellipsoid 
( E  = const., c/R = const.) occurs for two regions of changing the angular velocity 
rotation of the system as a whole. (In figurc 11 the left bound of the instability region 
for E = 0.6 is placed at f, < -9). 

Also, the two-eddy instability i s  possible for rotation of fluid around any axis of 
the ellipsoid. Thus, i t  is necessary to choose the appropriate parameter f,. 

The dashed lines in figure 11 show the one-eddy instability regions for an ellipsoid 
rotating as a whole, which may be calculated with the terms 252, abw, and - 252, abo, 
inserted in (4.15), which are valid for fields linear in coordinates. Therefore, the 
instability is possible if 

l-(E,fJ < c/R -= l+(E,f,), l+(e) = (1*e+2fc)i. (5.7) 

These curves are shown in figure 11. 
The stars in figure 11 indicate the limit of the two-eddy instability for the ellipsoid 

with c/R = 1.27, E = 0.18 investigated experimentally by Boubnov (1978). For 
f = 0 the rotation in this ellipsoid was stable. 

More detailed analysis of (4.19) indicates that  there are no other instability regions 
for disturbances w4-w,. 

It is interesting that the Coriolis force field cannot change the type of instability 
under consideration, i.e. B2-4AC > 0 in (4.20) for any f. 

The modification of (4.23)-(4.25) by Coriolis field terms may be considered 
analogously. In  this case, we have the additional terms -2fabo,,, 2fabw,,, -4fabw,, 
4fabw, on the right-hand sides of (4.23). Therefore C = C( f )  in (4.24) must be equal 
to 

C ( f )  = 4 [ 2 ~ ~ ( a ~ + b ~ ) + f ( 4 c ~ - a ~ - b ~ ) - 2 f ~ ] ~  2 0. 
This means that the oscillation-type instability based on fields w,-w,, for any f also 

cannot be transformed into a wave-type instability with C < 0. Thus we have shown 
that the types of instability cannot be transformed one into another by means of 
changing the coriolis parameter in the barotropic flows considered. 



26 E. B. Gledzer and V .  M .  Ponomarev 
c l R  

f, 

FIGURE 1 1 .  The instability regions for flow in an ellipsoid in the (c /R,  f,)-plane. 

5.2. The inJluence of the elliptical rotation on the stability of a non-uniform Jluid 
Let us consider the stability of the velocity field ( 2 . 1 )  for the density-stratified flow 
equations in the Boussinesq approximation for unbounded fluid. This problem was 
formulated by Craik (1989). Taking the gravity acceleration g to be directed opposite 
to  the z-axis let us present the temperature and pressure field in the form 

T = YZ+T', p = p,+p' ,  p ,  = $pp[Pqy~~+Q~(~*+y*)] ,  p = l/To. 
Using these variables and variables (2 .4)  and the change T'/R + T, p'/52R4 + p  we 

have the following equations instead of (2.6) : 

aP Ps Y DW = --+-T, DT+w- = 0. aZ 52 52 
Eliminating T from (5.8) gives 

where for y > 0, N = (Pqy); is the Brunt-Vaisala frequcncy, 7 = const. 
Eliminating u and v from (2.5) by virtue of the continuity equation and using (5.9) 

This equation is the generalization of ( 2 . 7 )  for non-uniform fluid and may be 

In cylindrical coordinates, we seek a solution of (5.10) in the form 
reduced to (2.7) by setting 7 = 0, Dw = -ap/az.  

1 00 

p n ( r ,  t )  exp (-imp) , 

1 (5.11) 

a .  
at 

, D, = - - i n ,  k,2 = k2(l-c2).  
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t 
FIGURE 12. The instability regions for unbounded stratified flow in the (kz /hz ,  7)-plane : 1 ,  the 
region of stability for B = 0.4; 2, the region of stability for 6 = 0.6; 3, the region of instability for 
B = 0.6. 

Its solution is 
pn = exp (int) J,(hr)P(t), (5.12) 

(5.13) 
($+q)[(i+ecos2t)--4e~sin2t dp 

dt 

It is easy to show that for /3gy = 0 the substitution P = aA/at reduces (5.13) to the 
equation of Ince type described by Waleffe (1990) for uniform unbounded elliptical 
flow. 

For E = 0 equation (5.13) gives the well known conditions of stability of circular 
rotation of non-uniform fluid : stability at  /3gy > - 4Q2k2/h2 and instability at  
/3gy < -4Q2k2/h2. Here the usual condition of stability y > 0 (temperature 
increasing or density decreasing) without rotation for the rotation case is replaced by 
a weaker one. 

Certainly (5.13) may be obtained from (5.10) by a substitution similar to (2.8), 
since for p ( r ,  t )  an equation equivalent to (3.10) for w(r, t )  can be written. 

To solve (5.13), let us present it in the form 

P = exp (ist) C, exp ( - int). 
n 

Substituting (5.14) in (5.13) gives the following equations for the C,: 

(5.14) 

E 
(8-n) [r + 4q:- (1 + ps") (8--) ' ]  Cn + 5 [ q -  (s-n)21 L(8-n +2) on+, 

k2 
h2 

+(s-n-2)Cn-2]=0, q : = 2  

For small E this system can be truncated to keep only C, and C-l, giving the 
instability boundary as 

<q<l-$(l-;). (5.15) 

For arbitrary values of e the numerically calculated region of instability is shown 
2 FLM 240 
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in figure 12 within the areas enclosed by lines E = const. ( E  = 0.2,0.4, 0.6) originating 
from the point pgy/B2 = 1, k2/h2 = 0. 

As was noted for pgy/B2 < -4k2/h2 at  E = 0, the rotation is unstable (the region 
to the left of the dashed line e = 0 starting from the origin of the coordinates). 
Numerical calculations show that an interval of k2 /h2  exist for fixed E and /3gy/Qz, 
for which the elliptical rotation is stable. It is located within the instability region for 
e = 0. Here, equation (5.13) demonstrates behaviour analogous to  a stable pendulum 
with a vibrating point of suspension. The corresponding regions of k2/h2 and /3gy/Q2 
are located between lines E = const. in the left part of figure 12 (in figure 12 E = 0.4, 
0.6). These regions become narrower with increasing k2/h2 and 171. 

Another instability region of (5.13) originates from the point 7 = 9. The 
corresponding region of instability of (5.13) is shown in figure 12 for e = 0.6. Note, 
that this region turns out  to be narrower than the main region of instability (5.15). 

6. Conclusions 
Attention in this paper was devoted mainly to the types of elliptical instability in 

vessels of elliptical section. The wavc and oscillation types of instability were 
considered using two modifications of the Galcrkin method. The first is based on the 
system of functions which represent the inertial waves in fluid rotating as a solid 
body. It can be applied to volumes of arbitrary elliptical section. A representation of 
the velocity field as polynomials in the coordinates was used for flows in the three- 
axis ellipsoid, which leads to exact solutions of the linear stability problem. 

The wave-type instability is a system of spatial waves with monotone amplitude 
growth. The oscillation-type instability is determined by perturbations that oscillate 
with frequencies close to the angular frcquency of the basic elliptical rotation, which 
makes it difficult to observe in experiments. 

The regions of instability for an elliptical cylinder and a three-axis ellipsoid 
coincide with experimentally defined regions for disturbances with a small number 
of eddies (see figure 2 u ) .  

The influence of the Coriolis force field on the stability of elliptical rotation is 
discussed. It is characterized by the ratio of general rotation angular velocity to  the 
value of the elliptical rotation of fluid f = Q,/Q. It is shown that for small values of 
the ellipticity parameter E ,  the elliptical rotation is stable in the linear approximation 
for - %  <f < -4. The change of parameterf may stabilize or destabilize the elliptical 
rotation and change the unstable modes for a given vessel but not the type of 
instability. 

A method connected with the w-equation (2.7) (or for pressure p (5.10)) may be 
applied to investigate the elliptical instability of unbounded stratified flows. The 
regions of instability that were absent for circular rotation of fluid are described in 
the plane of parameters (k2 /h2 ,  q ) ,  where k / h  and = N / Q ,  are the non-dimensional 
wavenumber and Brunt-Vaisala frequency (figure 12). The phenomenon of 
stabilization of elliptical rotation was also found with respect to the unstable 
perturbations that existed for circular flow with unstable temperature stratification. 

Professor A. M. Obukhov discussed the ideas of this paper in summer 1989. Also 
the authors would like to thank Dr B. M. Boubnov for providing the photographs in 
figure 10 and Professor F. V. Dolzhansky for helpful discussions. 
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